chore: comment

This commit is contained in:
2025-08-07 21:00:32 +08:00
parent f946cb2fd1
commit 67cdcfea33
24 changed files with 734 additions and 105 deletions

View File

@@ -1,3 +1,12 @@
//! This module defines the core traits and logic for evaluating the LIR.
//!
//! The central components are:
//! - `EvalContext`: A trait that defines the environment and operations needed for evaluation.
//! It manages the evaluation stack, scopes, and primop calls.
//! - `Evaluate`: A trait implemented by LIR nodes to define how they are evaluated.
//! - `Value`: An enum representing all possible values during evaluation. This is an
//! internal representation, distinct from the public-facing `nixjit_value::Value`.
use std::rc::Rc;
use hashbrown::HashMap;
@@ -5,37 +14,59 @@ use hashbrown::HashMap;
use nixjit_error::{Error, Result};
use nixjit_ir::{self as ir, ArgIdx, ExprId, PrimOpId};
use nixjit_lir as lir;
use nixjit_value::{Const, Symbol};
use nixjit_value::{Const, Symbol, format_symbol};
pub use crate::value::*;
mod value;
/// A trait defining the context in which LIR expressions are evaluated.
pub trait EvalContext: Sized {
/// Evaluates an expression by its ID.
fn eval(&mut self, expr: &ExprId) -> Result<Value>;
/// Enters a `with` scope for the duration of a closure's execution.
fn with_with_env<T>(
&mut self,
namespace: Rc<HashMap<String, Value>>,
f: impl FnOnce(&mut Self) -> T,
) -> T;
fn with_args_env<T>(&mut self, args: Vec<Value>, f: impl FnOnce(&mut Self) -> T) -> (Vec<Value>, T);
/// Pushes a new set of arguments onto the stack for a function call.
fn with_args_env<T>(
&mut self,
args: Vec<Value>,
f: impl FnOnce(&mut Self) -> T,
) -> (Vec<Value>, T);
/// Looks up an identifier in the current `with` scope chain.
fn lookup_with<'a>(&'a self, ident: &str) -> Option<&'a Value>;
/// Looks up a function argument by its index on the current stack frame.
fn lookup_arg<'a>(&'a self, idx: ArgIdx) -> &'a Value;
/// Pops the current stack frame, returning the arguments.
fn pop_frame(&mut self) -> Vec<Value>;
/// Calls a primitive operation (builtin) by its ID.
fn call_primop(&mut self, id: PrimOpId, args: Vec<Value>) -> Result<Value>;
}
/// A trait for types that can be evaluated within an `EvalContext`.
pub trait Evaluate<Ctx: EvalContext> {
/// Performs the evaluation.
fn eval(&self, ctx: &mut Ctx) -> Result<Value>;
}
impl<Ctx: EvalContext> Evaluate<Ctx> for ExprId {
/// Evaluating an `ExprId` simply delegates to the context.
fn eval(&self, ctx: &mut Ctx) -> Result<Value> {
ctx.eval(self)
}
}
impl<Ctx: EvalContext> Evaluate<Ctx> for lir::Lir {
/// Evaluates an LIR node by dispatching to the specific implementation for its variant.
fn eval(&self, ctx: &mut Ctx) -> Result<Value> {
use lir::Lir::*;
match self {
@@ -63,6 +94,7 @@ impl<Ctx: EvalContext> Evaluate<Ctx> for lir::Lir {
}
impl<Ctx: EvalContext> Evaluate<Ctx> for ir::AttrSet {
/// Evaluates an `AttrSet` by evaluating all its static and dynamic attributes.
fn eval(&self, ctx: &mut Ctx) -> Result<Value> {
let mut attrs = AttrSet::new(
self.stcs
@@ -79,24 +111,26 @@ impl<Ctx: EvalContext> Evaluate<Ctx> for ir::AttrSet {
let v_eval_result = v.eval(ctx)?;
attrs.push_attr(k.unwrap_string(), v_eval_result);
}
let result = Value::AttrSet(attrs.into()).ok();
Ok(result.unwrap())
let result = Value::AttrSet(attrs.into());
Ok(result)
}
}
impl<Ctx: EvalContext> Evaluate<Ctx> for ir::List {
/// Evaluates a `List` by evaluating all its items.
fn eval(&self, ctx: &mut Ctx) -> Result<Value> {
let items = self
.items
.iter()
.map(|val| val.eval(ctx))
.collect::<Result<Vec<_>>>()?;
let result = Value::List(List::from(items).into()).ok();
Ok(result.unwrap())
let result = Value::List(List::from(items).into());
Ok(result)
}
}
impl<Ctx: EvalContext> Evaluate<Ctx> for ir::HasAttr {
/// Evaluates a `HasAttr` by evaluating the LHS and the attribute path, then performing the check.
fn eval(&self, ctx: &mut Ctx) -> Result<Value> {
use ir::Attr::*;
let mut val = self.lhs.eval(ctx)?;
@@ -110,12 +144,12 @@ impl<Ctx: EvalContext> Evaluate<Ctx> for ir::HasAttr {
}
})
}))?;
let result = val.ok();
Ok(result.unwrap())
Ok(val)
}
}
impl<Ctx: EvalContext> Evaluate<Ctx> for ir::BinOp {
/// Evaluates a `BinOp` by evaluating the LHS and RHS, then performing the operation.
fn eval(&self, ctx: &mut Ctx) -> Result<Value> {
use ir::BinOpKind::*;
let mut lhs = self.lhs.eval(ctx)?;
@@ -166,6 +200,7 @@ impl<Ctx: EvalContext> Evaluate<Ctx> for ir::BinOp {
}
impl<Ctx: EvalContext> Evaluate<Ctx> for ir::UnOp {
/// Evaluates a `UnOp` by evaluating the RHS and performing the operation.
fn eval(&self, ctx: &mut Ctx) -> Result<Value> {
use ir::UnOpKind::*;
let mut rhs = self.rhs.eval(ctx)?;
@@ -182,6 +217,8 @@ impl<Ctx: EvalContext> Evaluate<Ctx> for ir::UnOp {
}
impl<Ctx: EvalContext> Evaluate<Ctx> for ir::Select {
/// Evaluates a `Select` by evaluating the expression, the path, and the default value (if any),
/// then performing the selection.
fn eval(&self, ctx: &mut Ctx) -> Result<Value> {
use ir::Attr::*;
let mut val = self.expr.eval(ctx)?;
@@ -212,18 +249,20 @@ impl<Ctx: EvalContext> Evaluate<Ctx> for ir::Select {
})
}))?;
}
let result = val.ok();
Ok(result.unwrap())
Ok(val)
}
}
impl<Ctx: EvalContext> Evaluate<Ctx> for ir::If {
/// Evaluates an `If` by evaluating the condition and then either the consequence or the alternative.
fn eval(&self, ctx: &mut Ctx) -> Result<Value> {
// TODO: Error Handling
let cond = self.cond.eval(ctx)?;
let cond = cond
.try_unwrap_bool()
.map_err(|_| Error::EvalError(format!("expected a boolean but found ...")))?;
let cond = cond.as_ref().try_unwrap_bool().map_err(|_| {
Error::EvalError(format!(
"if-condition must be a boolean, but got {}",
cond.typename()
))
})?;
if cond {
self.consq.eval(ctx)
@@ -234,27 +273,27 @@ impl<Ctx: EvalContext> Evaluate<Ctx> for ir::If {
}
impl<Ctx: EvalContext> Evaluate<Ctx> for ir::Call {
/// Evaluates a `Call` by evaluating the function and its arguments, then performing the call.
fn eval(&self, ctx: &mut Ctx) -> Result<Value> {
let mut func = self.func.eval(ctx)?;
// FIXME: ?
let ctx_mut = unsafe { &mut *(ctx as *mut Ctx) };
func.call(
self.args
.iter()
.map(|arg| arg.eval(ctx)),
ctx_mut,
)?;
Ok(func.ok().unwrap())
func.call(self.args.iter().map(|arg| arg.eval(ctx)), ctx_mut)?;
Ok(func)
}
}
impl<Ctx: EvalContext> Evaluate<Ctx> for ir::With {
/// Evaluates a `With` by evaluating the namespace, entering a `with` scope,
/// and then evaluating the body.
fn eval(&self, ctx: &mut Ctx) -> Result<Value> {
let namespace = self.namespace.eval(ctx)?;
let typename = namespace.typename();
ctx.with_with_env(
namespace
.try_unwrap_attr_set()
.map_err(|_| Error::EvalError(format!("expected a set but found ...")))?
.map_err(|_| {
Error::EvalError(format!("'with' expects a set, but got {}", typename))
})?
.into_inner(),
|ctx| self.expr.eval(ctx),
)
@@ -262,20 +301,27 @@ impl<Ctx: EvalContext> Evaluate<Ctx> for ir::With {
}
impl<Ctx: EvalContext> Evaluate<Ctx> for ir::Assert {
/// Evaluates an `Assert` by evaluating the condition. If true, it evaluates and
/// returns the body; otherwise, it returns an error.
fn eval(&self, ctx: &mut Ctx) -> Result<Value> {
let cond = self.assertion.eval(ctx)?;
let cond = cond
.try_unwrap_bool()
.map_err(|_| Error::EvalError(format!("expected a boolean but found ...")))?;
let cond = cond.as_ref().try_unwrap_bool().map_err(|_| {
Error::EvalError(format!(
"assertion condition must be a boolean, but got {}",
cond.typename()
))
})?;
if cond {
self.expr.eval(ctx)
} else {
Err(Error::EvalError("assertion failed".to_string()))
Ok(Value::Catchable("assertion failed".to_string()))
}
}
}
impl<Ctx: EvalContext> Evaluate<Ctx> for ir::ConcatStrings {
/// Evaluates a `ConcatStrings` by evaluating each part, coercing it to a string,
/// and then concatenating the results.
fn eval(&self, ctx: &mut Ctx) -> Result<Value> {
let mut parts = self
.parts
@@ -283,7 +329,7 @@ impl<Ctx: EvalContext> Evaluate<Ctx> for ir::ConcatStrings {
.map(|part| {
let mut part = part.eval(ctx)?;
part.coerce_to_string();
part.ok()
Ok(part)
})
.collect::<Result<Vec<_>>>()?
.into_iter();
@@ -292,44 +338,44 @@ impl<Ctx: EvalContext> Evaluate<Ctx> for ir::ConcatStrings {
a.concat_string(b);
a
});
Ok(result.ok().unwrap())
Ok(result)
}
}
impl<Ctx: EvalContext> Evaluate<Ctx> for ir::Str {
/// Evaluates a `Str` literal into a `Value::String`.
fn eval(&self, _: &mut Ctx) -> Result<Value> {
let result = Value::String(self.val.clone()).ok();
Ok(result.unwrap())
Ok(Value::String(self.val.clone()))
}
}
impl<Ctx: EvalContext> Evaluate<Ctx> for ir::Const {
/// Evaluates a `Const` literal into its corresponding `Value` variant.
fn eval(&self, _: &mut Ctx) -> Result<Value> {
let result = match self.val {
Const::Null => Value::Null,
Const::Int(x) => Value::Int(x),
Const::Float(x) => Value::Float(x),
Const::Bool(x) => Value::Bool(x),
}
.ok();
Ok(result.unwrap())
};
Ok(result)
}
}
impl<Ctx: EvalContext> Evaluate<Ctx> for ir::Var {
/// Evaluates a `Var` by looking it up in the `with` scope chain.
/// This is for variables that could not be resolved statically.
fn eval(&self, ctx: &mut Ctx) -> Result<Value> {
ctx.lookup_with(&self.sym)
.ok_or_else(|| {
Error::EvalError(format!(
"variable {} not found",
Symbol::from(self.sym.clone())
))
Error::EvalError(format!("undefined variable '{}'", format_symbol(&self.sym)))
})
.map(|val| val.clone())
}
}
impl<Ctx: EvalContext> Evaluate<Ctx> for ir::Path {
/// Evaluates a `Path`. (Currently a TODO).
fn eval(&self, ctx: &mut Ctx) -> Result<Value> {
todo!()
}

View File

@@ -1,3 +1,5 @@
//! Defines the runtime representation of an attribute set (a map).
use core::ops::Deref;
use std::fmt::Debug;
use std::rc::Rc;
@@ -7,12 +9,16 @@ use hashbrown::{HashMap, HashSet};
use itertools::Itertools;
use nixjit_error::{Error, Result};
use nixjit_value as p;
use nixjit_value::Symbol;
use nixjit_value::{self as p, format_symbol};
use super::Value;
use crate::EvalContext;
/// A wrapper around a `HashMap` representing a Nix attribute set.
///
/// It uses `#[repr(transparent)]` to ensure it has the same memory layout
/// as `HashMap<String, Value>`.
#[repr(transparent)]
#[derive(Constructor, PartialEq)]
pub struct AttrSet {
@@ -56,16 +62,24 @@ impl Deref for AttrSet {
}
impl AttrSet {
/// Creates a new `AttrSet` with a specified initial capacity.
pub fn with_capacity(cap: usize) -> Self {
AttrSet {
data: HashMap::with_capacity(cap),
}
}
/// Inserts an attribute, overwriting any existing attribute with the same name.
pub fn push_attr_force(&mut self, sym: String, val: Value) {
self.data.insert(sym, val);
}
/// Inserts an attribute.
///
/// # Panics
///
/// This method currently uses `todo!()` and will panic if the attribute
/// already exists, indicating that duplicate attribute handling is not yet implemented.
pub fn push_attr(&mut self, sym: String, val: Value) {
if self.data.get(&sym).is_some() {
todo!()
@@ -73,6 +87,10 @@ impl AttrSet {
self.data.insert(sym, val);
}
/// Performs a deep selection of an attribute from a nested set.
///
/// It traverses the attribute path and returns the final value, or an error
/// if any intermediate attribute does not exist or is not a set.
pub fn select(
&self,
mut path: impl DoubleEndedIterator<Item = Result<String>>,
@@ -84,7 +102,7 @@ impl AttrSet {
let Some(Value::AttrSet(attrs)) = data.get(&item) else {
return Err(Error::EvalError(format!(
"attribute '{}' not found",
Symbol::from(item)
format_symbol(item)
)));
};
data = attrs.as_inner();
@@ -95,6 +113,7 @@ impl AttrSet {
})
}
/// Checks if an attribute path exists within the set.
pub fn has_attr(
&self,
mut path: impl DoubleEndedIterator<Item = Result<String>>,
@@ -110,24 +129,38 @@ impl AttrSet {
Ok(data.get(&last?).is_some())
}
/// Merges another `AttrSet` into this one, with attributes from `other`
/// overwriting existing ones. This corresponds to the `//` operator in Nix.
pub fn update(&mut self, other: &Self) {
for (k, v) in other.data.iter() {
self.push_attr_force(k.clone(), v.clone())
}
}
/// Returns a reference to the inner `HashMap`.
pub fn as_inner(&self) -> &HashMap<String, Value> {
&self.data
}
/// Converts an `Rc<AttrSet>` to an `Rc<HashMap<String, Value>>` without allocation.
///
/// # Safety
///
/// This is safe because `AttrSet` is `#[repr(transparent)]`.
pub fn into_inner(self: Rc<Self>) -> Rc<HashMap<String, Value>> {
unsafe { core::mem::transmute(self) }
}
/// Creates an `AttrSet` from a `HashMap`.
pub fn from_inner(data: HashMap<String, Value>) -> Self {
Self { data }
}
/// Performs a deep equality comparison between two `AttrSet`s.
///
/// It recursively compares the contents of both sets, ensuring that both keys
/// and values are identical. The attributes are sorted before comparison to
/// ensure a consistent result.
pub fn eq_impl(&self, other: &Self) -> bool {
self.data.iter().len() == other.data.iter().len()
&& std::iter::zip(
@@ -137,6 +170,7 @@ impl AttrSet {
.all(|((k1, v1), (k2, v2))| k1 == k2 && v1.eq_impl(v2))
}
/// Converts the `AttrSet` to its public-facing representation.
pub fn to_public(&self, seen: &mut HashSet<Value>) -> p::Value {
p::Value::AttrSet(p::AttrSet::new(
self.data

View File

@@ -1,3 +1,4 @@
//! Defines the runtime representation of a partially applied function.
use std::rc::Rc;
use derive_more::Constructor;
@@ -8,10 +9,17 @@ use nixjit_ir::ExprId;
use super::Value;
use crate::EvalContext;
/// Represents a partially applied user-defined function.
///
/// This struct captures the state of a function that has received some, but not
/// all, of its expected arguments.
#[derive(Debug, Constructor)]
pub struct FuncApp {
/// The expression ID of the function body to be executed.
pub body: ExprId,
/// The arguments that have already been applied to the function.
pub args: Vec<Value>,
/// The lexical scope (stack frame) captured at the time of the initial call.
pub frame: Vec<Value>,
}
@@ -26,6 +34,10 @@ impl Clone for FuncApp {
}
impl FuncApp {
/// Applies more arguments to a partially applied function.
///
/// It takes an iterator of new arguments, appends them to the existing ones,
/// and re-evaluates the function body within its captured environment.
pub fn call<Ctx: EvalContext>(
self: &mut Rc<Self>,
mut iter: impl Iterator<Item = Result<Value>> + ExactSizeIterator,

View File

@@ -1,3 +1,5 @@
//! Defines the runtime representation of a list.
use std::fmt::Debug;
use std::ops::Deref;
@@ -9,6 +11,7 @@ use nixjit_value::Value as PubValue;
use super::Value;
use crate::EvalContext;
/// A wrapper around a `Vec<Value>` representing a Nix list.
#[derive(Default)]
pub struct List {
data: Vec<Value>,
@@ -46,35 +49,43 @@ impl Deref for List {
}
impl List {
/// Creates a new, empty `List`.
pub fn new() -> Self {
List { data: Vec::new() }
}
/// Creates a new `List` with a specified initial capacity.
pub fn with_capacity(cap: usize) -> Self {
List {
data: Vec::with_capacity(cap),
}
}
/// Appends an element to the back of the list.
pub fn push(&mut self, elem: Value) {
self.data.push(elem);
}
/// Appends all elements from another `List` to this one.
/// This corresponds to the `++` operator in Nix.
pub fn concat(&mut self, other: &Self) {
for elem in other.data.iter() {
self.data.push(elem.clone());
}
}
/// Consumes the `List` and returns the inner `Vec<Value>`.
pub fn into_inner(self) -> Vec<Value> {
self.data
}
/// Performs a deep equality comparison between two `List`s.
pub fn eq_impl(&self, other: &Self) -> bool {
self.len() == other.len()
&& core::iter::zip(self.iter(), other.iter()).all(|(a, b)| a.eq_impl(b))
}
/// Converts the `List` to its public-facing representation.
pub fn to_public(&self, seen: &mut HashSet<Value>) -> PubValue {
PubValue::List(PubList::new(
self.data

View File

@@ -1,3 +1,14 @@
//! Defines the internal representation of values during evaluation.
//!
//! This module introduces the `Value` enum, which is the cornerstone of the
//! interpreter's runtime. It represents all possible data types that can exist
//! during the evaluation of a Nix expression. This is an internal, mutable
//! representation, distinct from the public-facing `nixjit_value::Value`.
//!
//! The module also provides `ValueAsRef` for non-owning references and
//! implementations for various operations like arithmetic, comparison, and
//! function calls.
use std::fmt::Debug;
use std::hash::Hash;
use std::process::abort;
@@ -26,6 +37,11 @@ pub use func::*;
pub use list::List;
pub use primop::*;
/// The internal, C-compatible representation of a Nix value during evaluation.
///
/// This enum is designed for efficient manipulation within the interpreter and
/// JIT-compiled code. It uses `#[repr(C, u64)]` to ensure a predictable layout,
/// with the discriminant serving as a type tag.
#[repr(C, u64)]
#[derive(IsVariant, TryUnwrap, Unwrap)]
pub enum Value {
@@ -143,6 +159,9 @@ impl PartialEq for Value {
impl Eq for Value {}
/// A non-owning reference to a `Value`.
///
/// This is used to avoid unnecessary cloning when inspecting values.
#[derive(IsVariant, TryUnwrap, Unwrap, Clone)]
pub enum ValueAsRef<'v> {
Int(i64),
@@ -161,6 +180,7 @@ pub enum ValueAsRef<'v> {
}
impl Value {
/// Returns a `ValueAsRef`, providing a non-owning view of the value.
pub fn as_ref(&self) -> ValueAsRef<'_> {
use Value::*;
use ValueAsRef as R;
@@ -182,10 +202,12 @@ impl Value {
}
}
impl Value {
/// Wraps the `Value` in a `Result::Ok`.
pub fn ok(self) -> Result<Self> {
Ok(self)
}
/// Returns the name of the value's type.
pub fn typename(&self) -> &'static str {
use Value::*;
match self {
@@ -205,6 +227,7 @@ impl Value {
}
}
/// Checks if the value is a callable entity (a function or primop).
pub fn callable(&self) -> bool {
match self {
Value::PrimOp(_) | Value::PrimOpApp(_) | Value::Func(_) => true,
@@ -213,7 +236,16 @@ impl Value {
}
}
pub fn call<Ctx: EvalContext>(&mut self, mut iter: impl Iterator<Item = Result<Value>> + ExactSizeIterator, ctx: &mut Ctx) -> Result<()> {
/// Performs a function call on the `Value`.
///
/// This method handles calling functions, primops, and their partially
/// applied variants. It manages argument application and delegates to the
/// `EvalContext` for the actual execution.
pub fn call<Ctx: EvalContext>(
&mut self,
mut iter: impl Iterator<Item = Result<Value>> + ExactSizeIterator,
ctx: &mut Ctx,
) -> Result<()> {
use Value::*;
*self = match self {
&mut PrimOp(func) => {
@@ -254,7 +286,8 @@ impl Value {
} else if let Value::FuncApp(func) = val {
let mut func = Rc::unwrap_or_clone(func);
func.args.push(args.pop().unwrap());
let (ret_args, ret) = ctx.with_args_env(func.args, |ctx| ctx.eval(&func.body));
let (ret_args, ret) =
ctx.with_args_env(func.args, |ctx| ctx.eval(&func.body));
args = ret_args;
val = ret?;
}
@@ -264,7 +297,9 @@ impl Value {
PrimOpApp(func) => func.call(iter.collect::<Result<_>>()?, ctx),
FuncApp(func) => func.call(iter, ctx),
Catchable(_) => return Ok(()),
_ => Err(Error::EvalError("attempt to call something which is not a function but ...".to_string()))
_ => Err(Error::EvalError(
"attempt to call something which is not a function but ...".to_string(),
)),
}?;
Ok(())
}
@@ -520,6 +555,12 @@ impl Value {
self
}
/// Converts the internal `Value` to its public-facing, serializable
/// representation from the `nixjit_value` crate.
///
/// The `seen` set is used to detect and handle cycles in data structures
/// like attribute sets and lists, replacing subsequent encounters with
/// `PubValue::Repeated`.
pub fn to_public(&self, seen: &mut HashSet<Value>) -> PubValue {
use Value::*;
if seen.contains(self) {

View File

@@ -1,3 +1,5 @@
//! Defines the runtime representation of a partially applied primitive operation.
use std::rc::Rc;
use derive_more::Constructor;
@@ -8,15 +10,28 @@ use nixjit_ir::PrimOpId;
use super::Value;
use crate::EvalContext;
/// Represents a partially applied primitive operation (builtin function).
///
/// This struct holds the state of a primop that has received some, but not
/// all, of its required arguments.
#[derive(Debug, Clone, Constructor)]
pub struct PrimOpApp {
/// The name of the primitive operation.
pub name: &'static str,
/// The number of remaining arguments the primop expects.
arity: usize,
/// The unique ID of the primop.
id: PrimOpId,
/// The arguments that have already been applied.
args: Vec<Value>,
}
impl PrimOpApp {
/// Applies more arguments to a partially applied primop.
///
/// If enough arguments are provided to satisfy the primop's arity, it is
/// executed. Otherwise, it returns a new `PrimOpApp` with the combined
/// arguments.
pub fn call(
self: &mut Rc<Self>,
args: Vec<Value>,

View File

@@ -1,10 +1,19 @@
//! Defines a placeholder for Nix's contextful strings.
//!
//! In Nix, strings can carry a "context" which affects how they are
//! handled, particularly with regards to path resolution. This module
//! provides the basic structures for this feature, although it is
//! currently a work in progress.
// TODO: Contextful String
/// Represents the context associated with a string.
pub struct StringContext {
context: Vec<()>,
}
impl StringContext {
/// Creates a new, empty `StringContext`.
pub fn new() -> StringContext {
StringContext {
context: Vec::new(),
@@ -12,12 +21,14 @@ impl StringContext {
}
}
/// A string that carries an associated context.
pub struct ContextfulString {
string: String,
context: StringContext,
}
impl ContextfulString {
/// Creates a new `ContextfulString` from a standard `String`.
pub fn new(string: String) -> ContextfulString {
ContextfulString {
string,